Как Решить Нелинейное Уравнение в Excel с Помощью Подбора Параметра • Варианты решений

Численное решение уравнений средствами MS EXCEL

Цель:изучить технологию численного решения уравнений средствами MS EXCEL.

Пример 4.1. Нахождение корней полиномов при помощи табулирования и сервисной функции Подбор параметра.

Известно, что если функция, определенная в интервале [a,b], имеет значения F(а) и F(b) с разными знаками, то в интервале [a,b] есть, по крайней мере, один корень. Построить алгоритм нахождения корней уравнений с заданной точностью EPS следующим образом.

1. Определить начальный интервал [A, B], где находятся корни.

модули всех корней xk , k = 1…n расположены в круговом кольце

Таким образом, положительные корни лежат в интервале [A, B], а отрицательные корни — в интервале [-B, -A].

2. Табулируя полином в найденных начальных интервалах (например, с шагом (В-А)/10), составить таблицу .

3. Определить две соседние ячейки х, где функция меняет свой знак. Одно из значений (для которого значение функции ближе к нулю) принять за начальное приближение к корню полинома.

4. (меню Сервис). Относительная погрешность вычислений и предельное число итераций задаются на вкладке Вычисления диалогового окна Параметры (Сервис з Параметры з Вычисления) (рис. 4.1).

Как Решить Нелинейное Уравнение в Excel с Помощью Подбора Параметра • Варианты решений

Как Решить Нелинейное Уравнение в Excel с Помощью Подбора Параметра • Варианты решений

Рис. 4.2. Диалоговое окно Подбор параметра

В появившемся диалоговом окне отметить Значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.

6. После подбора параметра (ОК) х получит значение корня. Процесс повторяется для всех найденных начальных приближений в диапазоне, определяемом формулой (4.1).

Рис. 4.3. Диалоговое окно Специальная вставка

Пример 4.2.Нахождение корней нелинейных уравнений с помощью метода итераций.

Пусть дано уравнение f(x)=0. Для нахождения его корней методом итераций уравнение представляют в виде x=F(x) и записывают итерационную схему

с помощью которой строится итерационный процесс уточнения корней, начиная с начального значения x0, которое выбирается самостоятельно. Достаточное условие сходимости процесса: в окрестности корня | F / (x)|

2. Создать таблицу с заголовками столбцов Номер шага, Очередное приближение к корню, Проверка на точность.

3. В первую ячейку первой строки таблицы занести значение 0, во вторую – начальное приближение.

4. В следующие строки занести, соответственно, номер очередного шага, итерационную формулу, вычисляющую правую часть итерационной схемы, и условную формулу, позволяющую помещать в ячейку текст «Стоп» или «Дальше» в зависимости от выполнения заданной точности решения (см. п. 5).

5. Процесс копирования формулы продолжать до получения необходимой точности: разность двух рядом стоящих приближений по модулю должна быть меньше заданного значения EPS.

Если процесс расходится (получающиеся приближения удаляются друг от друга) или сходится очень медленно, то необходимо сменить вид представления x=F(x).

В этом может оказать помощь другой итерационный метод решения нелинейных уравнений – метод Ньютона. Его итерационная схема имеет вид

Сравнивая (4.2) и (4.3), замечаем, что в качестве функции F(xk) можно взять правую часть из формулы (4.3). В большинстве случаев метод Ньютона сходится быстрее.

Пример 4.3. Нахождение корней нелинейных уравнений методом бисекции.

Если метод итераций сходится не всегда, то метод бисекции (или метод деления отрезка пополам, или метод дихотомии) – безусловно сходящийся метод нахождения корней нелинейного уравнения F(x)=0, лишь бы был известен отрезок, на котором расположен корень уравнения.

Пример 4.4. Решение систем линейных алгебраических уравнений.

В Excel имеются специальные функции для работы с матрицами (Вставка функции пМатематические):

С их помощью можно решать системы линейных алгебраических уравнений вида

Решение имеет вид Х = А –1 ЧВ, где А –1 – матрица, обратная по отношению к матрице А.

С помощью функции МОБР находится обратная матрица, а затем с помощью функции МУМНОЖ она перемножается с вектором-столбцом правых частей уравнений.

Способ 2 (правило Крамера). Если определитель D, составленный из коэффициентов при неизвестных, отличен от нуля, то решение имеет вид

Здесь Dj – дополнительный определитель, полученный из главного определителя системы D путем замены его j-го столбца вектором-столбцом В.

С помощью функции МОПРЕД находятся главный и дополнительные определители, и по формулам (4.5) вычисляются корни СЛАУ.

Способ 3 (метод исключений Гаусса). Этот метод основан на приведении матрицы системы к треугольному виду, что достигается последовательным исключением неизвестных из уравнений системы.

Предположим, что в (4.4) a11 ¹ 0. Разделим первое уравнение системы на a11 (этот коэффициент называется ведущим или главным элементом), получим:

Затем из каждого из остальных уравнений вычитается первое уравнение, умноженное на соответствующий коэффициент ai1 (i=2,3,¼, n).

Далее аналогичную процедуру выполняют с этой системой, оставляя в покое первое уравнение. Только теперь делят на другой ведущий элемент a22 (1) ¹0.

В результате исключения неизвестных приходим к СЛАУ с верхней треугольной матрицей с единицами на главной диагонали:

Индексы над коэффициентами означают, сколько раз данное уравнение преобразовывалось.

Обратный ход метода Гаусса заключается в нахождении неизвестных xn, xn-1, . , x1 , причем в указанном порядке.

В этом списке xn уже определено из последнего уравнения системы (4.6), а общая формула обратного хода имеет вид:

Проиллюстрируем этот алгоритм на примере решения системы из трех уравнений.

1.Располагаем на листе Excel матрицу коэффициентов и столбец правых частей (т.н. расширенная матрица 3´4), например, в ячейках А4:D6 (рис. 4.4).

Фигурные скобки появляются автоматически при вводе формулы комбинацией клавиш Shift+Ctrl+Enter, как признак того, что идет работа не с отдельными ячейками, а с массивами.

и копируем эту формулу в диапазон ячеек А10:D10. В ячейках А9 и А10 появились нули.

4.В ячейки А12:D12 копируем значения первой строки расширенной матрицы А8:D8, в ячейки А13:D13 – формулу .

При этом второй элемент главной диагонали матрицы коэффициентов становится равным единице.

5)В ячейки А16:D17 копируем значения первых двух строк расширенной матрицы (А12:D13), а в ячейки А18:D18 – формулу: .

Прямой ход метода Гаусса завершен: получилась верхняя треугольная матрица с диагональными элементами, равными 1.

Задание 4.5. Решение систем нелинейных уравнений.

С помощью сервисной программы Поиск решения (Сервис | Поиск решения) в Excel можно решать системы нелинейных уравнений.

В общем случае система нелинейных уравнений имеет вид:

Составим новую функцию F(x1, х2, . хn), представляющую собой сумму квадратов правых частей уравнений:

Очевидно, переменные x1, х2, . хn , являющиеся решением системы (4.7), с необходимостью и достаточностью являются также решением уравнения:

На листе Excel отводим ячейки для неизвестных данной системы уравнений, например с А1 по А5 (если пять переменных), и вводим туда начальные приближения. В ячейку В2 вводим формулу, вычисляющую функцию (4.8).

Открываем диалоговое окно Поиск решения (рис. 4.5). В поле Установить целевую ячейку вводим В2, в группе Равной устанавливаем переключатель в положение Значению и в поле ввода задаем 0. В поле Изменяя ячейки вводим диапазон ячеек А1:А5.

Рис.4.5. Диалоговое окно Поиск решения при решении нелинейного уравнения

После нажатия на кнопку Выполнить будет найдено решение, которое поместится в ячейки А1:А5. В ячейке В2 будет вычислено значение левой части уравнения (4.9) с относительной погрешностью, задаваемой в диалоговом окне Параметры поиска решения.

Примечание 1. При неудачном выборе вектора начального приближения решение может быть не найдено. Поэтому необходим предварительный анализ системы уравнений с целью определения лучшего (более близкого к корню) начального приближения. Например, для системы из двух уравнений можно затабулировать функцию (4.8) и в качестве начальных выбрать приближения, наиболее близкие к нулю.

Примечание 2. Система уравнений может иметь несколько корней, поэтому необходим ее анализ и с этой стороны. Задавая разные начальные приближения, можно получить разные решения системы.

Задание 4.1. Найти корни полиномов при помощи табулирования и сервисной функции Подбор параметра.

Данные для решения взять из таблицы 4.1. Корни найти с точностью EPS=0,00001.

Задание 4.2.Найти корни нелинейных уравнений с помощью метода итераций.

Данные для решения взять из таблицы 4.2. Точность решения EPS=0,0001.

После получения решения построить график, иллюстрирующий процесс сходимости: по оси абсцисс отложить номер шага, по оси ординат – очередное приближение к корню.

Задание 4.3. Найти корни нелинейных уравнений методом бисекции.

Вариант Уравнение Вариант Уравнение
ln(x)+(x+1) 3 =0 x–sin(x)=0,25
x2 x =1 tg(0,58x+0,1)=x 2
x–cos(x)=0 3x–cos(x)–1=0
3x+cos(x)+1=0
x+ln(x)=0,5 x+lg(x)=0,5
2–x=ln(x) x 2 +4sin(x)=0
ctg(1,05x)–x 2 =0
(2–x)exp(x)=0,5 xlg(x)–1,2=0
2,2x–2 x =0
x 2 +4sin(x)=0 2x–lg(x)–7=0
2x–lg(x)=7
5x–8ln(x)=8
sin(x-0,5)–x+0,8=0 cos(x+0,3)=x 2
x 2 cos(2x)=–1

При использовании Excel достаточно внести в некоторые ячейки, лежащие в одной строке, формулы, осуществляющие:

— вычисление значений левой и правой границы отрезков локализации;

— вычисление произведения значений функций в левой и правой границах отрезка (для контроля правильности алгоритма);

— проверку на точность решения (аналогично предыдущему заданию).

Затем формулы копируются вниз по столбцам до тех пор, пока не будет найден корень с заданной степенью точности EPS=0,0001.

Данные для решения взять из таблицы 4.2, то есть решить одно и то же уравнение двумя способами.

Задание 4.4.Решить тремя способами систему линейных алгебраических уравнений, взяв данные для решения из таблицы 4.3.

Проверить найденное решение умножением матрицы коэффициентов на вектор-столбец решения.

Таблица 4.3 Системы линейных алгебраических уравнений

Задание 5. Решить систему нелинейных уравнений, взяв данные из таблицы 1.4. Проверить найденное решение.

Вариант Система нелинейных уравнений Вариант Система нелинейных уравнений

1. Опишите технологию нахождения корней полиномов при помощи табулирования и сервисной функции Подбор параметра.

2. С помощью какой сервисной команды осуществляется уточнение корня при использовании метода последовательных приближений?

3. В чем заключается отличие технологии нахождения корней нелинейных уравнений с помощью метода итераций от технологии нахождения корней нелинейных уравнений методом бисекции?

5. Укажите специальные функции Excel для работы с матрицами.

6. Опишите технологию решения систем линейных алгебраических уравнений.

7. С помощью, какой сервисной программы Excel осуществляется решение систем нелинейных уравнений?

Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Задайте в диалоговом окне Поиск решения параметры, необходимые для нахождения значений x и y, в которых формула в ячейке B5 имеет максимум. Если же вы хотите что-то уточнить, я с радостью помогу!
Расчёт коэффициентов уравнения по Крамеру будем производить в ячейках напротив соответствующих детерминантов по формуле: a (в ячейке M22) — «=K22/K21»; b (в ячейке M23) — «=K23/K21»; с (в ячейке M24) — «=K24/K21».
Как Решить Нелинейное Уравнение в Excel с Помощью Подбора Параметра • Варианты решений

Применение надстройки Поиск решения в Excel: Методические указания и задания к лабораторной работе по курсу «Информатика»

Коэффициент множественной корреляции, коэффициент детерминации, критерий Фишера и критерий Стьюдента позволяют не отвергнуть гипотезу о линейном характере зависимости стоимости пакета акций предприятий от параметров приведенных в таблице.

Вариант Уравнение Вариант Уравнение
ln(x)+(x+1) 3 =0 x–sin(x)=0,25
x2 x =1 tg(0,58x+0,1)=x 2
x–cos(x)=0 3x–cos(x)–1=0
3x+cos(x)+1=0
x+ln(x)=0,5 x+lg(x)=0,5
2–x=ln(x) x 2 +4sin(x)=0
ctg(1,05x)–x 2 =0
(2–x)exp(x)=0,5 xlg(x)–1,2=0
2,2x–2 x =0
x 2 +4sin(x)=0 2x–lg(x)–7=0
2x–lg(x)=7
5x–8ln(x)=8
sin(x-0,5)–x+0,8=0 cos(x+0,3)=x 2
x 2 cos(2x)=–1

РЕШЕНИЕ УРАВНЕНИЙ В СРЕДЕ MS EXCEL. Решение линейных уравнений уравнений с помощью средства «Подбор параметра» Пример 1 Найти все корни уравнения 3cos2x-sinx. — презентация

Презентация на тему: » РЕШЕНИЕ УРАВНЕНИЙ В СРЕДЕ MS EXCEL. Решение линейных уравнений уравнений с помощью средства «Подбор параметра» Пример 1 Найти все корни уравнения 3cos2x-sinx.» — Транскрипт:

2 Решение линейных уравнений уравнений с помощью средства «Подбор параметра» Пример 1 Найти все корни уравнения 3cos2x-sinx = 0 при x [0;3]

3 Шаг 1 Табулируем функцию 3cos2x-sinx = 0 с шагом 0,3 на отрезке [0;3] . При решении уравнений с помощью средства Подбор параметра значения переменной должны быть заданы числом

4 Из таблицы значений видно, что функция на [0;3] меняет знак два раза: при х [0,6;0,9] и х [2,4;2,7], на этих отрезках есть точки пересечения функции с осью Х

5 Найдем корни полинома методом последовательных приближений с помощью средства поиск решения: Сервис > Подбор параметра

6 Скопируйте формулу из ячейки В2 в F2 (теперь формула ссылается на пустую ячейку Е2, поэтому в F2 отражается 0) Установите в ячейку Е2 значение переменной из [0,6;0,9], например х=0,7

7 Зададим относительную погрешность вычислений 0,00001 и предельное число итераций 1000 Сервис > Параметры > Вычисления

9 В качестве начальных значений приближений к корням можно взять любые точки из отрезков локализации корней, например 0,7 и 2,5

10 Установите курсорную рамку в ячейку F2 и выполните Сервис, Подбор параметра Аналогично найдите второй корень уравнения

11 РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ В СРЕДЕ MS EXCEL С ИСПОЛЬЗОВАНИЕМ СРЕДСТВА «ПОИСК РЕШЕНИЯ»

12 Пара (х;у) является решением системы уравнений тогда и только тогда, когда она является решением следующего уравнения с двумя неизвестными: (х 2 +у 2 -3) 2 +(2х+3у-1) 2 =0

13 Решением системы — точки пересечения окружности r=3 и прямой уравнение имеет не более двух различных решений Определяемое значение нелинейной задачи зависит от начального приближения

14 Для локализации корней протабулируем левую часть уравнения (х 2 +у 2 -3) 2 + (2х+3у-1) 2 = 0 по переменным х и у на [-3;3] шагом 1,5

15 Протабулируем функцию с помощью таблицы подстановки F(x;y)=(х 2 +у 2 -3) 2 +(2х+3у-1) 2

16 Из таблицы видно, что начальное приближение к корню следует выбрать следующие пары значений (-1,5;1,5), (1,5;0) и (1,5;1,5)

17 Для нахождения корней уравнения введем соответствующие пары значений (х; у) для первого корня в ячейки в А10, А11 для второго корня в ячейки в А14,А15 для третьего корня в ячейки в А17,А18 F(x;y) соответственно в ячейки В13, В16, В19

18 Найдем первый корень. 1.Установить курсорную рамку в ячейке В15 2.Выполнить Сервис > Поиск Решения

20 В окне Поиск решения установить целевую ячейку В13, равной значению 0, изменяя ячейки $A$11:$A$12 Нажмите кнопку Параметры и убедитесь, что снят флажок Линейная модель

21 После нажатия кнопки Выполнить средство Поиск решения находит решение, которое помещает в ячейки А11, А12 Аналогично находим второй и третий корни. Решением уравнения будут две пары значений (-1,269;1,179) (1,576;-0,717)

23 Простейшие операции над массивами МАССИВ — объект Excel, используемый для получения нескольких значений в результате вычисления одной формулы или для работы с набором аргументов, расположенных в различных ячейках и сгруппированных по строкам или столбцам.

24 Два типа массивов Microsoft Excel : диапазон массива — непрерывный диапазон ячеек, использующих общую формулу; диапазон констант — набор констант, используемых в качестве аргументов функций.

25 диапазон констант — набор констант, используемых в качестве аргументов функций диапазон массива — непрерывный диапазон ячеек, использующих общую формулу;

26 Массив констант может включать: Числа (целые, с десятичной точкой или в экспоненциальном формате) Текст (должен быть взят в двойные кавычки) Логические значения (ИСТИНА, ЛОЖЬ или значения ошибок например #Н/Д) Элементы разного типа. Массив констант не может содержать Формулы. $ (знак доллара) Скобки % (знак процента) Ссылки на ячейки Столбцы или строки разной длины

27 Для умножения (деления) массива на число: 1.Выделить диапазон ячеек того же размера 2.Ввести в первую ячейку диапазона формулу =Е1:G3*100 и нажать комбинацию клавиш SHIFT+ CTRL+ENTER Если в формуле используется ссылка на ячейку в которой хранится число, то ссылка на эту ячейку должна быть абсолютной

28 Формула массива обрабатывает несколько наборов значений (аргументов массива). Каждый аргумент массива должен включать одинаковое число строк и столбцов. Формула массива создается так же, как и другие формулы, только что для ввода такой формулы используются комбинация клавиш SHIFT+ CTRL+ENTER

30 Формула массива может выполнить несколько вычислений, а затем вернуть одно значение или группу значений. Пример Рассчитать суммарный балл оценки экспертом качества услуги по формуле: Si — суммарный балл Wi – вес критерия Ci – оценка критерия экспертом N – количество критериев

31 Способ решения 1 1.Введите в ячейку D2 формулу =В2*С2 и скопируйте ее в ячейки диапазона D3:D7 2.Введите в ячейку D8 формулу = СУММ(D2:D7) 3.В ячейке D9 вычислите значение S = D86

33 Функцию можно ввести в ячейку с клавиатуры или с помощью средства Мастер функций Каждая функция выводится в стандартном окне диалога Для ввода аргумента достаточно указать в соответствующих полях числовые значения аргументов, адреса ячеек или адреса диапазонов ячеек

35 Окно диалога функции Суммпроизв() Результат вычисления формулы — число

36 Функции для работы с массивами МУМНОЖ(массив1;массив2) — перемножает массивы. Массивы (матрицы) должны быть одной размерности и оба массива должны содержать только числа.

37 МОБР(массив)- возвращает обратную матрицу для матрицы, хранящейся в массиве

38 ТРАНСП(массив) — используется для того, чтобы поменять ориентацию массива на рабочем листе с вертикальной на горизонтальную и наоборот.

39 МОПРЕД(массив) — возвращает определитель матрицы (матрица хранится в массиве). Определитель матрицы — это число, вычисляемое на основе значений элементов массива. Для массива A1:C3, состоящего из трех сток и тех столбцов, определитель вычисляется следующим образом: = A1*(B2*C3-B3*C2) + A2*(B3*C1-B1*C3) + A3*(B1*C2-B2*C1)

40 СУММСУММКВ(массив_x;массив_y) — возвращает сумму сумм квадратов соответствующих элементов двух массивов. Сумма сумм квадратов — это распространенный термин во многих статистических вычислениях. Массив_x — это первый массив или интервал значений. Массив_y — это второй массив или интервал значений.

42 ЧИСЛСТОЛБ(массив) — возвращает количество столбцов в ссылке или массиве: =ЧИСЛСТОЛБ(A1:D9) в ячейке отображается число 4 ЧСТРОК(массив) — возвращает количество строк в ссылке или массиве. = ЧСТРОК (A1:D9) в ячейке отображается число 9 Статистические функции, который используются для прогнозирования Тенденция(), Рост(), Предсказ(), Линейн() также используют правило ввода значений массива

43 Решение матричных уравнений в EXCEL Найти решение уравнения А*Х=В А-матрица коэффициентов В- столбец (вектор) свободных членов Х-столбец (вектор)неизвестных Решение линейной системы имеет вид: Х=А -1 *В А -1 – обратная матрица

44 Шаг 1. Вычислим А -1 с помощью функции =МОБР(массив) Шаг 2. Выделить диапазон К2:К4 для элементов массива вектора Х и ввести формулу =МУМНОЖ(E2:G4;I2:I4) Для вставки массива нажать комбинацию клавиш SHIFT+ CTRL+ENTER

45 Шаг 3. Проверка. Умножим матрицу А на найденный вектор Х В результате мы должны получить вектор В Выделим диапазон М2:М4 и введем функцию = МУМНОЖ(А2:С4;К2:К4) Для вставки массива нажать комбинацию клавиш SHIFT+ CTRL+ENTER

46 Самостоятельно решить системы линейных уравнений А 2 *Х=В и А 3 *Х=В

47 Решить уравнение Z=Х т A X А-матрица, Х-вектор, Х T — транспонированный вектор Шаг1. Найти транспонированный вектор Х T Выделать диапазон G2:I2 и ввести формул =ТРАНСП(E2:E4) для ввода массива значений нажать SHIFT+ CTRL+ENTER

48 Шаг2. Умножить полученную строку Х T на матрицу Авыделить диапазон К2:М2 и ввести формулу =МУМНОЖ(G2:I2;A2:C4) Шаг 3. В отдельную ячейку введите формулу =МУМНОЖ(K2:M2;E2:E4) – результат вычисления число 227, но для ввода нажать SHIFT+ CTRL+ENTER

49 Это же решение можно получить путем ввода в ячейку одной формулы, содержащей вложенные функции: =МУМНОЖ(МУМНОЖ(ТРАНСП(E2:E4);A2:C4);E2:E4) Самостоятельно решить уравнения: 1. Z=Y т A т AY 2. Z=Y т A т A 2 Y

51 1. Ввести матрицу коэффициентов в ячейки рабочего листа MS Excel 2. Скопировать первую строчку (диапазон А1:Е6) в диапазоны А6:Е6 А11:Е11 А16:Е16

54 4. Выделить диапазон А7:Е7 и скопируйте значения в буфер Выделите диапазон А12:Е12 и выполните вставку значений без формул используйте команду Правка, специальная вставка Аналогично вставьте значения в диапазон А17:Е17

55 5. Выделите диапазон А13:Е13 и введите формулу массива, которая обращает в 0 коэффициент при х 2 третьего и четвертого уравнений системы =A8:E8-$A$7:$E$7*(B8/$B$7) Для вставки элементов массива нажать SHIFT+ СTRL+ENTER Затем скопировать массив А13:Е13 в диапазон А14:Е14

56 5. Выделите диапазон А19:Е19 и введите формулу массива, которая обращает в 0 коэффициент при х 3 =A14:E14-$A$13:$E$13*(C14/$C$13) Для вставки элементов массива нажать SHIFT+ СTRL+ENTER Прямая прогонка метода Гаусса завершена

57 Обратная прогонка заключается в вводе формул : В диапазон G4:K4 =A19:E19/D19 В диапазон G3:K3 =(A18:E18-G4:K4*D18)/C18 В диапазон G2:K2 =(A17:E17-G4:K4*D17-G3:K3*C17)/B17 В диапазон G1:K1 =(A16:E16-G4:K4*D16-G3:K3*C16-G2:K2*B16)/A16

Численное решение уравнений средствами MS EXCEL
Если метод итераций сходится не всегда, то метод бисекции (или метод деления отрезка пополам, или метод дихотомии) – безусловно сходящийся метод нахождения корней нелинейного уравнения F(x)=0, лишь бы был известен отрезок, на котором расположен корень уравнения.
Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Здесь D j дополнительный определитель, полученный из главного определителя системы D путем замены его j-го столбца вектором-столбцом В. Если же вы хотите что-то уточнить, я с радостью помогу!
То есть, в ячейку B21 мы должны поместить сумму столбца, где возводили показатель X в четвёртую степень — F17. Просто сошлёмся на ячейку — «=F17». Далее нам необходима сумма столбца где возводили X в куб — E17, далее идём строго по системе. Таким образом, нам необходимо будет заполнить всю матрицу.

Как сделать уравнение в excel?

В рассмотренной задаче ограничения отсутствуют. В диалоговом окне Параметры поиска решения флажок Линейная модель должен быть сброшен. После нажатия кнопки Выполнить будет найден первый корень. Чтобы найти второй корень, потребуется вызвать Поиск решения для второй пары. На рис. 10 в диапазоне B13.D15 приведен результат решения задачи.

Оставить отзыв

Публикуя свою персональную информацию в открытом доступе на нашем сайте вы, даете согласие на обработку персональных данных и самостоятельно несете ответственность за содержание высказываний, мнений и предоставляемых данных. Мы никак не используем, не продаем и не передаем ваши данные третьим лицам.