Таблица Функции е в Степени Минус х • Правила дифференцирования

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Найти производную: алгоритм и примеры решений

n 1 2 3 4 5 6 7 8 9 10
1 n 1 1 1 1 1 1 1 1 1 1
2 n 2 4 8 16 32 64 128 256 512 1024
3 n 3 9 27 81 243 729 2187 6561 19683 59049
4 n 4 16 64 256 1024 4096 16384 65536 262144 1048576
5 n 5 25 125 625 3125 15625 78125 390625 1953125 9765625
6 n 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176
7 n 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249
8 n 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824
9 n 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401
10 n 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000

Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется — основанием степени, а количество операций умножения — показателем степени.

Таблица степеней

1. Производная константы (числа). Любого числа (1, 2, 5, 200. ), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего «икса». Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Примеры использования функции СТЕПЕНЬ в Excel

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Интерактивная таблица и изображения таблицы степеней в высоком качестве.

Продолжаем искать производные вместе
Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные. Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:
Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Найти производные самостоятельно, а затем посмотреть решения Ещё больше домашних заданий на нахождение производных. Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок «Производные простых тригонометрических функций».
Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие «Производная суммы дробей со степенями и корнями».

Таблица производных простых функций

Как построить график функций используя СТЕПЕНЬ в Excel

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных — под номером 3), получим Поэтому производной сложной функции посвящена отдельная статья.

Функция СТЕПЕНЬ в Excel для возведения числа в указанную степень
Примечание в данном примере использовались известные из математики формулы, а применение функция СТЕПЕНЬ позволило упростить расчеты. Пример 1. В таблице записана последовательность, которая представляет собой часть геометрической прогрессии. Необходимо определить: знаменатель геометрической прогрессии, значение 15-го ее члена, а также сумму первых 20 членов.
Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Депозитный калькулятор в Excel В таблице записана последовательность, которая представляет собой часть геометрической прогрессии. Другая частая ошибка — механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.
Оставить отзыв

Публикуя свою персональную информацию в открытом доступе на нашем сайте вы, даете согласие на обработку персональных данных и самостоятельно несете ответственность за содержание высказываний, мнений и предоставляемых данных. Мы никак не используем, не продаем и не передаем ваши данные третьим лицам.