Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Критерий Колмогорова.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Это численная мера расхождения между эмпирическим и теоретическим распределением.

Основная задача.Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.

1. Выбор гипотезыо виде теоретического распределения удобно делать с помощью полигонов или гистограмм частот. Сравнивают эмпирический полигон (или гистограмму) с известными законами распределения и выбирают наиболее подходящий.

Примеры эмпирических законов распределения приведены на рисунках:

В случае (а) выдвигается гипотеза о нормальном распределении, в случае (б) — гипотеза о равномерном распределении, в случае (в) — гипотеза о распределении Пуассона.

Основанием для выдвижения гипотезы о теоретическом распределении могут быть теоретические предпосылки о характере изменения признака. Например, выполнение условий теоремы Ляпунова позволяет сделать гипотезу о нормальном распределении. Равенство средней и дисперсии наводит на гипотезу о распределении Пуассона.

На практике чаще всего приходится встречаться с нормальным распределением, поэтому в наших задачах требуется проверить только гипотезу о нормальном распределении.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы — .

Итак, для проверки нулевой гипотезы Н0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если — нулевую гипотезу принимают, при ее отвергают.

Пример. Результаты исследования спроса на товар представлены в таблице:

Стоимость, руб. 120–160 160–180 180–200 200–220 220–280
Кол-во, шт.

Выдвинуть гипотезу о виде распределения и проверить её на уровне значимости a=0,01.

Для указания вида эмпирического распределения построим гистограмму

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

II. Проверим выдвинутую гипотезу о нормальном распределении, используя критерий согласия Пирсона.

1. Вычисляем , sВ.В качестве вариант возьмём среднее арифметическое концов интервалов:

За левый конец первого интервала примем (-¥), а за правый конец последнего интервала — (+¥). Результаты представлены в табл. 4.

3. Найдем теоретические вероятности Рi и теоретические частоты (см. табл. 4).

i Граница интервалов Ф(Zi) Ф(Zi+1) Pi= Ф(Zi+1)-Ф(Zi)
xi xi+1 Zi Zi+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

4. Сравним эмпирические и теоретические частоты. Для этого:

i
6,36 -1,36 1,8496 0,291
8,72 1,28 1,6384 0,188
12,12 1,88 3,5344 0,292
11,18 0,82 0,6724 0,060
11,64 -2,64 6,9696 0,599
S

б) по таблице критических точек распределения c 2 при заданном уровне значимости a=0,01 и числе степеней свободы k=m–3=5–3=2 находим критическую точку ; имеем .

Сравниваем c . . Следовательно, нет оснований отвергать гипотезу о нормальном законе распределения изучаемого признака генеральной совокупности. Т.е. расхождение между эмпирическими и теоретическими частотами незначимо (случайно). ◄

Пример. По выборке из 24 вариант выдвинута гипотеза о нормальном распределении генеральной совокупности. Используя критерий Пирсона при уровне значимости среди заданных значений = указать: а) наибольшее, для которого нет оснований отвергать гипотезу; б) наименьшее, начиная с которого гипотеза должна быть отвергнута.

где — число групп выборки (вариант), — число параметров распределения.

Так как нормальное распределение имеет 2 параметра ( и ), получаем

По таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы определяем критическую точку .

В случае а) для значений , равных 34 и 35, нет оснований отвергать гипотезу о нормальном распределении, так как . А наибольшее среди этих значений .

В случае б) для значений 36, 37, 38 гипотезу отвергают, так как . Наименьшее среди них .◄

2. Проверка гипотезы о равномерном распределении. При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* — оценки а и b. Действительно, для равномерного распределения М(Х) = , , откуда можно получить систему для определения а* и b*: , решением которой являются выражения (9).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (7`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Пример. Для выборки, интервальный статистический ряд которой имеет вид

Номер интервала Границы интервала Эмпирические частоты
2 – 5
5 – 8
8 – 11
11 – 14
14 – 17
17 – 20

проверить при уровне значимости α = 0,05 гипотезу о:

а) показательном; б) равномерном; в) нормальном законе распределения генеральной совокупности с помощью критерия Пирсона.

Объем выборки п = 70. Будем считать вариантами середины частичных интервалов: х1 = 3,5, х2 = 6,5,…, х6 = 18,5.

а) Вычислим теоретические частоты в предположении о показательном распределении генеральной совокупности при

аналогично Наблюдаемое значение критерия Критическая точка χ 2 (0,05;4)=9,5; и гипотеза о показательном распределении отклоняется.

теоретические частоты: Наблюдаемое значение критерия Критическая точка и гипотеза о равномерном распределении отклоняется.

в) Теоретические частоты для нормального распределения:

Так же вычисляются Наблюдаемое значение критерия Критическая точка Поскольку гипотеза о нормальном распределении генеральной совокупности принимается. ◄

Этот критерий применяется для проверки простой гипотезы Н0 о том, что независимые одинаково распределенные случайные величины Х1, Х2, …, Хп имеют заданную непрерывную функцию распределения F(x).

Найдем функцию эмпирического распределения Fn(x) и будем искать границы двусторонней критической области, определяемой условием

А.Н.Колмогоров доказал, что в случае справедливости гипотезы Н0 распределение статистики Dn не зависит от функции F(x), и при

— критерий Колмогорова, значения которого можно найти в соответствующих таблицах. Критическое значение критерия λп(α) вычисляется по заданному уровню значимости α как корень уравнения .

Можно показать, что приближенное значение вычисляется по формуле

На практике для вычисления значения статистики Dn используется то, что

Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Высшая математика и математические методы в психологии руководство к практическим занятиям для слушателей психологического факультета. Если же вы хотите что-то уточнить, я с радостью помогу!
Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое — по таблице с учетом того, что число степеней свободы k = s — 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

Критерий согласия Пирсона — Мегаобучалка

Основанием для выдвижения гипотезы о теоретическом распределении могут быть теоретические предпосылки о характере изменения признака. Например, выполнение условий теоремы Ляпунова позволяет сделать гипотезу о нормальном распределении. Равенство средней и дисперсии наводит на гипотезу о распределении Пуассона.

i
6,36 -1,36 1,8496 0,291
8,72 1,28 1,6384 0,188
12,12 1,88 3,5344 0,292
11,18 0,82 0,6724 0,060
11,64 -2,64 6,9696 0,599
S

Проверка выборки на нормальность распределения, хи-квадрат

Рисунок. Кривая нормального распределения. В процентах указаны объёмы выборки, попадающие в интервалы, измеренные в «сигмах» (=стандартных отклонениях для генеральной совокупности).

Проверка нормальности распределения по критерию согласия Пирсона хи-квадрат

Итак, мы имеем некую выборку из данных, полученных в результате наших измерений.

Если закон распределения генеральной совокупности, из которой взята наша выборка, неизвестен, то первое, что надо сделать — это проверить распределение в выборке на нормальность, т.е. соответствие закону нормального распределения (смотри: нормальное распределение ) .

У нас есть теоретически основания предполагать, что закон распределения есть и имеет какой-то определенный вид: назовем его А.

Проверяем нулевую гипотезу: генеральная совокупность распределена по закону А.

Проверка этой гипотезы производится при помощи специально подобранной случайной величины – критерия согласия.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Имеется несколько критериев согласия. Наиболее часто используется критерий согласия К.Пирсона («хи-квадрат»). Здесь мы ограничимся применением критерия Пирсона к проверке гипотезы о нормальном распределении генеральной совокупности.

Пусть по выборке объёма n получено следующее эмпирическое распределение:

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Варианты……………………

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Эмпирические частоты…….

Допустим, что в предположении нормального распределения генеральной совокупности вычислены теоретические частоты . При уровне значимости требуется проверить нулевую гипотезу: генеральная совокупность распределена нормально.

В качестве критерия проверки нулевой гипотезы примем случайную величину:

Естественно, что чем меньше различаются эмпирические и теоретические частоты, тем меньше величина критерия, и, следовательно, он характеризует близость эмпирического и теоретического распределений.

Доказано, что при n→∞ закон распределения случайной величины (А) стремится к закону распределения с степенями свободы независимо от того, какому закону распределения подчинена генеральная совокупность. Поэтому сам критерий называют критерием согласия .

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Построим правостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости :

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Если – то нет оснований отвергать нулевую гипотезу. В противном случае нулевую гипотезу отвергают, считая, что генеральная совокупность не распределена по нормальному закону.

Объём выборки должен быть достаточно велик (не менее 50). Каждая группа должна содержать не менее 5–8 вариант, а малочисленные группы следует объединять в одну, суммируя частоты.

Поскольку возможны ошибки первого и второго рода, следует проявлять осторожность. Например, можно повторить опыт, увеличить число наблюдений, построить предварительно график распределения и т.п.

При уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности, если известны эмпирические и теоретические частоты:

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Так как , то нет оснований отвергать нулевую гипотезу. Данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Критерий Колмогорова.
Основная задача.Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.
Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
В случае а выдвигается гипотеза о нормальном распределении, в случае б гипотеза о равномерном распределении, в случае в гипотеза о распределении Пуассона. Если же вы хотите что-то уточнить, я с радостью помогу!
Если закон распределения генеральной совокупности, из которой взята наша выборка, неизвестен, то первое, что надо сделать — это проверить распределение в выборке на нормальность, т.е. соответствие закону нормального распределения (смотри: нормальное распределение ) .
Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Проверка выборки на нормальность распределения, хи-квадрат | Кинезиолог

Теоретические частоты вычисляются для заданного закона распределения как количества элементов выборки, которые должны были попасть в каждый интервал, если бы случайная величина имела выбранный закон распределения, параметры которого совпадают с их точечными оценками по выборке, а именно:

КРИТЕРИЙ ХИ-КВАДРАТ ПИРСОНА

Карл Пирсон

Карл Пирсон

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности, содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Заполняем исходными данными четырехпольную таблицу сопряженности:

Артериальная гипертония есть (1) Артериальной гипертонии нет (0) Всего
Курящие (1) 40 30 70
Некурящие (0) 32 48 80
Всего 72 78 150

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы — показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента — мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе. ). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений «до-«после». В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение меньше 10, то для анализа лучше использовать точный критерий Фишера.
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек. В случае несоблюдения данного условия для сравнения долей следует также использовать точный критерий Фишера.

4. Как рассчитать критерий хи-квадрат Пирсона?

  1. Рассчитываем ожидаемое количество наблюдений для каждой из ячеек таблицы сопряженности (при условии справедливости нулевой гипотезы об отсутствии взаимосвязи) путем перемножения сумм рядов и столбцов с последующим делением полученного произведения на общее число наблюдений. Общий вид таблицы ожидаемых значений представлен ниже:
Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) (A+B)*(A+C) / (A+B+C+D) (A+B)*(B+D)/ (A+B+C+D) A + B
Фактор риска отсутствует (0) (C+D)*(A+C)/ (A+B+C+D) (C+D)*(B+D)/ (A+B+C+D) C + D
Всего A + C B + D A+B+C+D

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена. Если же вы хотите что-то уточнить, я с радостью помогу!
По условию конкурирующая гипотеза имеет вид H1:D(X)≠D(Y), поэтому критическая область-двустороняя, значит, что при отыскании критической точки следует брать уровень значимости , вдвое меньший заданного.

Методы статистики

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента — мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе. ). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений «до-«после». В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение меньше 10, то для анализа лучше использовать точный критерий Фишера.
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек. В случае несоблюдения данного условия для сравнения долей следует также использовать точный критерий Фишера.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое — по таблице с учетом того, что число степеней свободы k = s — 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

Артериальная гипертония есть (1) Артериальной гипертонии нет (0) Всего
Курящие (1) 40 30 70
Некурящие (0) 32 48 80
Всего 72 78 150

КРИТЕРИЙ КОРРЕЛЯЦИИ ПИРСОНА

Карл Пирсон

Карл Пирсон

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон.

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа.
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа.
  4. Критерий корреляции Пирсона является параметрическим, в связи с чем условием его применения служит нормальное распределение каждой из сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена.
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения rxy < 0.3 свидетельствуют о слабой связи, значения rxy от 0.3 до 0.7 — о связи средней тесноты, значения rxy > 0.7 — о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока:

Абсолютное значение rxy Теснота (сила) корреляционной связи
менее 0.3 слабая
от 0.3 до 0.5 умеренная
от 0.5 до 0.7 заметная
от 0.7 до 0.9 высокая
более 0.9 весьма высокая

Оценка статистической значимости коэффициента корреляции rxy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Полученное значение tr сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если tr превышает tкрит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице:

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Проверка Гипотезы о Нормальном Распределении по Критерию Пирсона в Excel • Непрерывный случай

Значение коэффициента корреляции Пирсона составило 0.97, что соответствует весьма высокой тесноте связи между уровнем тестостерона в крови и процентом мышечной массы. Данная корреляционная связь является статистически значимой (p<0.01).

Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Окружающий нас мир насыщен случайными событиями номера выигравших билетов в лотереях, результаты спортивных состязаний, состояние погоды, количество солнечных дней в течение года и так далее. Если же вы хотите что-то уточнить, я с радостью помогу!
Иными словами различие между эмпирическими и теоретическими частотами статистически значимо и вряд ли объяснимо случайными факторами. При этом с вероятностью 5% мы совершили ошибку 1-го рода (то есть, ген. совокупность на самом деле распределена нормально, но мы отвергли верную нулевую гипотезу).

Критерий согласия Пирсона. Примеры и видео (вычисление)

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа.
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа.
  4. Критерий корреляции Пирсона является параметрическим, в связи с чем условием его применения служит нормальное распределение каждой из сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена.
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Вероятность 0,000045 существенно меньше обычного уровня значимости 0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности (нулевая гипотеза о его честности отвергается).

Абсолютное значение rxy Теснота (сила) корреляционной связи
менее 0.3 слабая
от 0.3 до 0.5 умеренная
от 0.5 до 0.7 заметная
от 0.7 до 0.9 высокая
более 0.9 весьма высокая
Оставить отзыв

Публикуя свою персональную информацию в открытом доступе на нашем сайте вы, даете согласие на обработку персональных данных и самостоятельно несете ответственность за содержание высказываний, мнений и предоставляемых данных. Мы никак не используем, не продаем и не передаем ваши данные третьим лицам.