Как Сделать Аппроксимацию Методом Наименьших Квадратов в Excel • Суть метода

Аппроксимация опытных данных. Метод наименьших квадратов

Аппроксимация опытных данных. Метод наименьших квадратов

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

— с помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

Рис.1. Аппроксимирующая кривая, построенная по методу наименьших квадратов

— для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

— для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

— для аппроксимации точечных значений некоторой аппроксимирующей функцией.

— значения расчетной аппроксимирующей функции в узловых точках ,

— заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом «хороших» свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

Аппроксимация исходных данных линейной зависимостью

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Для применения метода наименьших квадратов экспоненциальная функция линеаризуется:

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Для применения метода наименьших квадратов степенная функция линеаризуется:

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Выбор наилучшей аппроксимирующей функции определяется значением среднеквадратического отклонения. В связи с этим следует по методу наименьших квадратов определить несколько аппроксимирующих функций, а затем по критерию наименьшего среднеквадратического отклонения выбрать наиболее подходящую функцию.

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Знайка, самый умный эксперт в Цветочном городе
Мнение эксперта
Знайка, самый умный эксперт в Цветочном городе
Если у вас есть вопросы, задавайте их мне!
Задать вопрос эксперту
Для некоторых это простейшая задача, с которой можно справиться в одно нажатие кнопки мыши, другие же попросту не знают, как. Если же вы хотите что-то уточнить, я с радостью помогу!
3.2.1 Построить график функции Программа построения графика SCREEN 12 WINDOW (-7, -6)-(7, 80) X1 = -7: X2 = 4 H = (X2 — X1) / 100 Y1 = 3 * X1 ^ 2 + 8 * X1 + 3 PSET (X1, Y1) FOR X = X1 TO X2 STEP H Y = 3 * X ^ 2 + 8 * X + 3 LINE -(X, Y) NEXT 3.2.2 Построить график функции Программа построения графика SCREEN 12 WINDOW (-1, -6)-(1.
использование функций в Excel

Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (МНК) в Excel..

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Оставить отзыв

Публикуя свою персональную информацию в открытом доступе на нашем сайте вы, даете согласие на обработку персональных данных и самостоятельно несете ответственность за содержание высказываний, мнений и предоставляемых данных. Мы никак не используем, не продаем и не передаем ваши данные третьим лицам.